Abstract

The Soil Conservation Service Curve Number (SCS-CN) method is widely used for predicting direct runoff volume for a given rainfall event. However, previous results indicated that when the CN value is determined from measured rainfall-runoff data in a natural watershed it is not possible to attribute a single CN value to the watershed, but actually the calculated CN values vary systematically with the rainfall depth. In a previous study, the authors investigated the hypothesis that the observed correlation between the calculated CN value and the rainfall depth in a watershed reflects the effect of the inevitable presence of soil-cover complex spatial variability along watersheds. In this study, a method to determine SCS-CN parameter values from rainfall-runoff data in heterogeneous watersheds is proposed. This method exploits the observed correlation between the calculated CN values and the rainfall depths in order to identify the spatial distribution of CN values along the watershed taking in to account the specific characteristics of the watershed. The proposed method utilizes the available rainfall-runoff data, remote sensing data and GIS techniques in order to provide information on spatial watershed characteristics that drive hydrological behavior. Furthermore, it allows the estimation of CN values for specific soil-land cover complexes in more complex watersheds. The proposed method was tested in a small experimental watershed in Greece. The watershed is equipped with a dense hydro-meteorological network, which together with a detailed land cover and soil survey using remote sensing and GIS techniques provided the detailed data required for this analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call