Abstract

The study of equations of mathematical physics, including inverse problems, is relevant today. This work is devoted to the fundamental problem of studying the solvability and qualitative properties of the solution of the inverse  problem  for  a  quasilinear  pseudoparabolic  equation (also called Sobolev-type equations) with memory term. To date, studies of direct and inverse problems for a pseudoparabolic equations are rapidly developing in connection with the needs of modeling and control of processes in thermal physics, hydrodynamics, and mechanics of a continuous medium. The pseudoparabolic equations similar to those considered in this work arise in the description of heat and mass transfer processes, processes of non-Newtonian fluids motion, wave processes, and in many other areas. The main types of the inverse problems are: boundary, retrospective, coefficient and geometric. The boundary and retrospective inverse problems lead to the study of linear problems. In turn, the statements related to the study of coefficient and geometric types bring to the nonlinear problems. Coefficient inverse problems are divided into two main groups: coefficient inverse problems, where the unknown is a function of one or several variables, and finite-dimensional coefficient inverse problems. In this article the existence and uniqueness of a weak and strong solution of the inverse problem in a bounded domain are proved by the Galerkin method. Also we used Sobolev’s embedding theorems, and obtained a priori estimates for the solution. Moreover, we get local and global theorems on the existence of the solution. Key words: Pseudoparabolic equation, inverse problem, existence, uniqueness, local solvability, global solvability, non-local condition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.