Abstract

Feed efficiency (FE) is an economically important trait in pig production. Gut microbiota plays an important role in energy harvest, nutrient metabolism, and fermentation of dietary indigestible components. Whether and which gut microbes affect FE in pigs are largely unknown. Here, a total of 208 healthy Duroc pigs were used as experimental materials. Feces and serum samples were collected at the age of 140 d. We first performed 16S rRNA gene and metagenomic sequencing analysis to investigate the relationship between the gut microbiome and porcine residual feed intake (RFI). 16S rRNA gene sequencing analysis detected 21 operational taxonomic units showing the tendency to correlation with the RFI (P < 0.01). Metagenomic sequencing further identified that the members of Clostridiales, e.g., Ruminococcus flavefaoiens, Lachnospiraceae bacterium 28-4, and Lachnospiraceae phytofermentans, were enriched in pigs with low RFI (high-FE), while 11 bacterial species including 5 Prevotella spp., especially, the Prevotella copri, had higher abundance in pigs with high RFI. Functional capacity analysis suggested that the gut microbiome of low RFI pigs had a high abundance of the pathways related to amino acid metabolism and biosynthesis, but a low abundance of the pathways associated with monosaccharide metabolism and lipopolysaccharide biosynthesis. Serum metabolome and fecal short-chain fatty acids were determined by UPLC-QTOF/MS and gas chromatography, respectively. Propionic acid in feces and the serum metabolites related to amino acid metabolism were negatively correlated with the RFI. The results from this study may provide potential gut microbial biomarkers that could be used for improving FE in pig production industry.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call