Abstract

The initiation of the methanol-to-olefins (MTO) process is investigated using a multiscale modeling approach where more than 100 ab initio computed (MP2:DFT) rate constants for H-SSZ-13 are used in a batch reactor model. The investigated reaction network includes the mechanism for initiation (42 steps) and a representative part of the autocatalytic olefin cycle (63 steps). The simulations unravel the dominant initiation pathway for H-SSZ-13: dehydrogenation of methanol to CO is followed by CO-methylation leading to the formation of the first C-C bond in methyl acetate despite high barriers of >200 kJ/mol. Our multiscale approach is able to shed light on the reaction sequence that ultimately leads to olefin formation and strikingly demonstrates that only with a full reactor model that includes autocatalysis with olefins as cocatalysts is one able to understand the initiation mechanism on the atomic scale. Importantly, the model also shows that autocatalysis takes over long before significant amounts of olefins are formed, thus guiding the interpretation of experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.