Abstract
A primary rat hepatocyte culture system was utilized to determine the proximate peroxisome proliferator(s) derived from di(2-ethylhexyl) phthalate (DEHP). DEHP was administered to rats and the urinary metabolites were identified and isolated. The major metabolites were those resulting from initial ω- or ω — 1-carbon oxidation of the mono(2-ethylhexyl) phthalate (MEHP) moiety. These metabolites, together with MEHP and 2-ethylhexanol, were added to primary rat hepatocyte cultures and the effect on peroxisomal enzyme activity was determined. The ω-carbon oxidation products [mono(3-carboxy-2-ethylpropyl) phthalate (I) and mono(5-carboxy-2-ethylpentyl) phthalate (V)] and 2-ethylhexanol produced little or no effect on CN −-insensitive palmitoyl-CoA oxidation (a peroxisomal marker). MEHP and the ω — 1-carbon oxidation products [mono-(2-ethyl-5-oxohexy) phthalate (VI) and mono(2-ethyl-5-hydroxyhexyl) phthalate (IX)] produced a large (7-to 11-fold) induction of peroxisomal enzyme activity. Similar structure-activity relationships were observed for the induction of cytochrome P-450-mediated lauric acid hydroxylase and increase in cellular coenzyme A content. This identification of the proximate proliferators will aid in the elucidation of the mechanism by which DEHP causes proliferation of peroxisomes in the rodent liver. Oral administration of MEHP (150 or 250 mg/kg) to male guinea pigs did not produce hepatic peroxisome proliferation. Addition of MEHP (0 to 0.5 m m) or one of the “active” proliferators in the rat (metabolite IX, 0 to 0.5 m m) to primary guinea pig hepatocyte cultures also failed to produce an induction of peroxisomal β-oxidation. Possible reasons for this species difference are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.