Abstract
In atherosclerotic lesions, smooth muscle cells (SMC) change from a contractile to a synthetic phenotype. The in vivo and in vitro phenotypic transformations of SMC have been confirmed by transmission electron microscopy (TEM), but the relationship between this change and the cell cycle is still unknown. We demonstrated the structural modulation of rabbit arterial SMC in primary culture by TEM and immunocytochemistry and simultaneously studied changes in two-dimensional histograms of the relative DNA and RNA contents by flow cytometry. During the first day of primary culture, the cells exhibited the contractile phenotype and were composed of a population in the G0 phase characterized by low contents of DNA and RNA. On the second day of culture, some of the cells (18.2%) had started but not completed the transition into the synthetic phenotype and a cell population in the G1A phase with an RNA content above the G0 level appeared in almost the same proportion. This cell population could be categorized as an “intermediate” type. Moreover, after 3 days when about three-quarters of the cells had undergone structural transition, the same proportion of cells had entered into the cycling phase, while some cells still remained in the G0 and G1A phases. Thus, cell cycle analysis by flow cytometry corresponded well with the observations obtained by TEM and immunocytochemistry. These results show that flow cytometry can rapidly and relatively conveniently monitor the process of phenotypic modulation in SMC and is a useful method for the analysis of such transitions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.