Abstract

We have developed a computational method that combines extended X-ray absorption fine structure (EXAFS) refinements with the integrated quantum mechanical and molecular mechanics (QM/MM) method. This method allows us to obtain a structure of a metal site inside a protein that is compatible with both EXAFS data and QM calculations (i.e., that is chemically reasonable). Thereby, the QM/MM calculations play the same role as MM in nearly all NMR and crystallographic refinementsEXAFS ensures that the metal−ligand distances are accurate and QM/MM fills in all the other structural data. We have used this method to show that a structure with a peroxide ion in the center of the trinuclear cluster fits experimental EXAFS data better than a structure with the peroxide ion on the side of the cluster for the peroxide adduct of multicopper oxidases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.