Abstract

The orthodontic treatment can be guided by the finite element (FE) simulation of periodontal ligament (PDL) mechanical properties, and the biomimetic degree of FE simulation can be primarily affected by the material properties of the PDL. According to the principle of parameter inverse, a method: response surface (RS) method and FE inverse method were proposed to identify the material parameters of PDL. The Prony series viscoelastic FE model was established based on the relaxation experiment. With root mean square error of simulation results and experimental results as the objective function, the optimal parameter combination was obtained by RS method, and the FE simulation result were compared with the experimental result. The result showed that the optimal parameters of the PDL were elastic modulus: 3.791 MPa, Poisson's ratio: 0.42, temperature: 29.294°C separately, and the simulation result of optimal combination maintained consistency with experiment with the correlation coefficient of 0.97258, indicating that the method proposed in this paper could well identify of PDL material parameters. The parameter identification method used in this paper can significantly improve the calculation efficiency, and reduce the parameter identification error compared with the simple FE inverse method, which has scientific significance and theoretical value.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.