Abstract

Today, the advanced numerical analysis of concrete structures requires the use of nonlinear material models of concrete in order to take into account the nonlinear behavior of concrete within finite element simulations. However, the effective application of nonlinear concrete material models within numerical simulations often becomes problematic because material models often contain parameters whose values are difficult to obtain. Modern computers are advanced enough to solve this problem through the inverse identification of the used material model's parameters. This inverse identification is based on the combination of optimization methods or procedures with the experimental approach. The aim of this paper is to perform the identification of some parameters of the Karagozian & Case Concrete model - Release III, which is implemented in LS-Dyna software, on the basis of an experimentally-measured loading curve. For this purpose, numerical and experimental approaches were combined with optimization procedures. The loading curve was obtained from a triaxial compression test performed on a concrete cylinder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call