Abstract

The endocrine pancreatic cells of Pseudemys scripta elegans were investigated immunocytochemically by light and electron microscopy. Insulin-, somatostatin (SST)-1, SST-28 (1-12)-, salmon (s)SST-25-, glucagon-, pancreatic polypeptide (PP)-, peptide tyrosine tyrosine (PYY)-, and neuropeptide tyrosine (NPY)-like immunoreactivities were observed. Insulin cells were immunogold labeled with bonito insulin antiserum and secretory granules were characterized by a wide halo and a dense core of varying shape. Consecutive PAP-immunostained sections showed that SST-28 (1–12), SST-14, and sSST-25 immunoreactivities occurred in the same cells. However, preabsorption tests demonstrated that anti-sSST-25 serum detected the invariant SST-14 molecule. The SST-28 (1–12)/SST-14-immunogold-labeled cells mainly had round or ovoid medium electron-dense granules. Glucagon-IR cells were characterized by round secretory granules with an electron-dense core, with or without a narrow clear halo. There were PP, PYY, and NPY (NPY-like) immunoreactivities in a population of glucagon-IR cells in the pancreatic duodenal region (glucagon/NPY cells). Most of the secretory granules of these glucagon/NPY-like cells had an electron-dense content and were round, although there were also pyriform or ovoid secretory granules which were smaller than those of glucagon-IR cells. Preabsorption tests proved that the NPY-like peptides detected in the endocrine pancreas of P. scripta elegans were more similar to NPY or PYY than to PP.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.