Abstract

The TP53 tumor suppressor gene regulates a number of genes that are involved in cell-cycle inhibition, apoptosis, and maintaining genetic stability. Recently, two genes that have a role in immunosurveillance were identified as downstream targets of TP53. These genes, TAP1 and fractalkine, may contribute to suppress tumor growth through host immunosurveillance. It has been reported that the mouse secreted phosphoprotein osteopontin (Opn) is one of the key cytokines for type 1 immune responses mediated by macrophages. It also was reported that Opn may play a role in suppressing tumor growth in vivo. Here we identified Opn as a Tp53-target gene using mRNA differential display analysis of embryonic fibroblasts from Tp53-deficient mice. Furthermore, we found that Opn expression was upregulated by DNA damage-induced Tp53 activity and by adenovirus-mediated transfer of the human TP53 gene. In addition, a luciferase assay showed that the Opn gene has a functional Tp53-responsive element in its promoter region, and a chromatin immunoprecipitation assay confirmed interaction between the Opn promoter and Tp53 protein in vivo. These results suggest that OPN is a direct transcriptional target of TP53. The TP53-directed regulation of OPN expression suggests a novel model of TP53 participation in immunosurveillance, involving interaction with the host immune system to prevent damaged cells from undergoing malignant transformation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call