Abstract
It is required to maintain silicon content in hot metal ([Si]) at a stable level to ensure smooth operation of the blast furnace ironmaking process. However, current blast furnace control strategy always leads to frequent fluctuation of silicon content in hot metal. To stabilize blast furnace operation, this article attempts to identify the optimum control centre of silicon content through exploring the operational data of blast furnace ironmaking process. A quantitative analysis of the impact of thermal state on the smelting efficiency and intensity is presented by combining wavelet denoising and fuzzy c-means (FCM) clustering. Simulation results show that the commonly adopted mean value of historical data is not necessarily the optimum state of blast furnace operation. There exists some optimum state lower than the mean value, under which higher smelting efficiency and intensity can be achieved. It is also proved that the “low silica smelting practice” attempt in the steel industry is feasible and meaningful.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.