Abstract

Peroxisome proliferator-activated receptors (PPARs) are essential for cellular physiological processes. However, there is less research on the PPAR-related genes in lung adenocarcinoma (LUAD). Open-access data were get from the cancer genome atlas (TCGA) and gene expression omnibus (GEO) databases. All the analysis were conducted in the R software based on different R packages. In this study, we gauged the PPAR score employing a set of 72 PPAR-associated genes and probed the biological impact of this score on lung adenocarcinoma (LUAD). Subsequently, we established a unique signature composed of eight PPAR-related genes (ANGPTL4, ACSL3, ADIPOQ, FABP1, SLC27A1, ACOX2, PPARD and OLR1) to forecast the prognosis of LUAD. The signature's effectiveness in predicting survival was validated through the receiver operating characteristic curve in the TCGA-LUAD cohort. As per the pathway enrichment analysis, several crucial oncogenic pathways and metabolic processes were enriched in high-risk individuals. Further, we observed that these high-risk patients exhibited heightened genomic instability. Additionally, compared to the low-risk cohort, high-risk patients demonstrated diminished immune components and function. Intriguingly, high-risk patients exhibited a potential heightened sensitivity to immunotherapy and certain drugs, including Gefitinib, Afatinib, Erlotinib, IAP_5620, Sapitinib, LCL161, Lapatinib and AZD3759. The prognosis model based on eight PPAR-related genes has satisfactory prognosis prediction efficiency. Meanwhile, our results can provide direction for future studies in the relevant aspects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call