Abstract

Intracranial aneurysm (IA) remains one of the most devastating neurological conditions. However, the pathophysiology of IA formation and rupture still remains unclear. The purpose of the present study was to identify the crucial microRNA (miRNA/miR) and genes involved in IAs and elucidate the mechanisms underlying the development of IAs. In the present study, novel miRNA regulation activities in IAs were investigated through the integration of public gene expression data of miRNA and mRNA using the Gene Expression Omnibus database, combined with bioinformatics prediction. A total of 15 differentially expressed miRNA and 1,447 differentially expressed mRNA between IAs and controls were identified. A number of miRNA-target gene pairs (770), whose expression levels were inversely correlated, were used to construct a regulatory network of miRNA-target genes in IAs. The biological functions and pathways of these target genes were revealed to be associated with IAs. Specific miRNA and genes, such as hsa-let-7f, hsa-let-7d, hsa-miR-7, RPS6KA3, TSC1 and IGF1 may possess key roles in the development of IAs. The integrated analysis in the present study may provide insights into the understanding of underlying molecular mechanisms of IAs and novel therapeutic targets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.