Abstract

The arsenical resistance (ars) operon of the conjugative R-factor R773 encodes an ATP-driven anion extrusion pump, producing bacterial resistance to arsenicals. There are three structural genes, of which the product of the middle gene, arsB, has not previously been identified. From nucleotide sequence data, the ArsB protein is predicted to be a 45577 Dalton hydrophobic protein. A mini-Mu transposition procedure was used to construct an arsB-lacZ gene fusion, producing a hybrid ArsB-beta-galactosidase protein which was localized in the inner membrane. The operon was cloned into a T7 RNA polymerase expression vector. In addition to the previously identified ArsA and ArsC proteins, the cells synthesized an inner membrane protein with an apparent mass of 36 kD identified as the ArsB protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.