Abstract
Abstract The aim of this paper is to identify the physical mechanism of interdecadal variability in simulations of the North Atlantic Ocean circulation with the Modular Ocean Model of the Geophysical Fluid Dynamics Laboratory. To that end, a hierarchy of increasingly complex model configurations is used. The variability in the simplest case, that of viscous, purely thermally driven flows in a flat-bottom ocean basin with a box-shaped geometry, is shown to be caused by an internal interdecadal mode. The westward propagation of temperature anomalies and the phase difference between the anomalous zonal and meridional overturning that characterize the interdecadal mode are used as “fingerprints” of the physical mechanism of the variability. In this way, the variability can be followed toward a less viscous regime in which the effects of continental geometry and bottom topography are also included. It is shown that, although quantitative aspects of the variability like period and spatial pattern are changing, the physical mechanism of the interdecadal variability in the more complex simulations can be attributed to the same processes as in the simplest model configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.