Abstract

Data with improved accuracy are presented for the low temperature reaction rates k(T) of the H-tunneling reaction between one specific host neighbor molecule in fluorene single crystals and a photoexcited acridine guest. The constant low temperature reaction rate k0 cannot be separated from the precursor intramolecular decay rate. This does not affect the analysis of the temperature dependent reaction rate, which renders the identification of two distinct thermally excited nuclear fluctuation modes promoting the H-transfer reaction. The energies are 125(15) and 440(40) cm−1. They agree well with corresponding lines in the Raman spectra of fluorene crystals. For the first time this result offers the possibility to test quantum mechanical reaction mechanisms without the need of averaging over unspecified distributions of nuclear fluctuation modes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.