Abstract

Lens epithelium-derived growth factor (LEDGF)/p75 is an important cellular co-factor for human immunodeficiency virus (HIV) replication. We originally identified LEDGF/p75 as a binding partner of integrase (IN) in human cells. The interaction has been mapped to the integrase-binding domain (IBD) of LEDGF/p75 located in the C-terminal part. We have subsequently shown that IN carrying the Q168A mutation remains enzymatically active but is impaired for interaction with LEDGF/p75. To map the integrase/LEDGF interface in more detail, we have now identified and characterized two regions within the enzyme involved in the interaction with LEDGF/p75. The first region centers around residues W131 and W132 while the second extends from I161 up to E170. For the different IN mutants the interaction with LEDGF/p75 and the enzymatic activities were determined. IN(W131A), IN(I161A), IN(R166A), IN(Q168A) and IN(E170A) are impaired for interaction with LEDGF/p75, but retain 3′ processing and strand transfer activities. Due to impaired integration, an HIV-1 strain containing the W131A mutation in IN displays reduced replication capacity, whereas virus carrying IN(Q168A) is replication defective. Comparison of the wild-type IN-LEDGF/p75 co-crystal structure with that of the modelled structure of the IN(Q168A) and IN(W131A) mutant integrases corroborated our experimental data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.