Abstract

Those suffering from a severe to profound sensorineural hearing loss can obtain substantial benefit from a cochlear implant prosthesis. An electrode array implanted in the inner ear stimulates auditory nerve fibers by direct injection of electrical current. A major limitation of today's technology is the imprecise control of intracochlear current flow, particularly the relatively wide spread of neural excitation. A better understanding of the intracochlear electrical fields is, therefore, required. This paper analyzes the structure of intracochlear potential measurements in relation to both the subject's anatomy and to the properties of the electrode array. An electrically equivalent network is proposed, composed of small lumped circuits for the interface impedance and for the cochlear tissues. The numerical methods required to estimate the model parameters from high-quality electrical potential recordings are developed. Finally, some models are presented for subjects wearing a Clarion CII device with a HiFocus electrode and discussed in terms of model reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.