Abstract
Primary ciliary dyskinesia (PCD) is a heterogeneous autosomal recessive disease that is caused by impaired ciliary and flagellar functions. About 50% of PCD patients show situs inversus, denoted as Kartagener syndrome. In most cases, axonemal defects in cilia and sperm tails can be demonstrated by electron microscopy, i.e. PCD patients often lack inner and/or outer dynein arms in their sperm tails and cilia, supporting the hypothesis that mutations in dynein genes may cause PCD. In order to identify novel PCD genes we have isolated the human ortholog of the murine Tcte3 gene. The human TCTE3 gene encodes a dynein light chain and shares high similarity to dynein light chains of other species. The TCTE3 gene is expressed in tissues containing cilia or flagella, it is composed of four exons and located on chromosome 6q25→q27. To elucidate the role of TCTE3 as a candidate gene for PCD a mutational analysis of thirty-six PCD patients was performed. We detected five polymorphisms in the coding sequence and in the 5′ UTR of the TCTE3 gene. In one patient a heterozygous nucleotide exchange was identified resulting in an arginine to isoleucine substitution at the amino acid level. However, this exchange was also detected in one control DNA. Our results indicate that mutations in the TCTE3 gene are not a main cause of primary ciliary dyskinesia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.