Abstract

It has been previously reported that transcription factor-microRNA (TF-miRNA) axes play a significant role in the carcinogenesis of several types of malignant tumor. However, there is a lack of research into the differences in the mechanism of Helicobacter pylori (HP)-positive [HP(+)] and HP-negative [HP(−)] gastric cancer. The aim of the present study was to identify the hub genes and TF-miRNA axes, and to determine the potential mechanisms involved in HP-associated gastric cancer. HP-associated mRNA and miRNA data, as well as the corresponding clinical information, was downloaded from The Cancer Genome Atlas database. Differentially expressed genes (DEGs) and DE miRNAs (DEMs) were then identified from the HP(+) and HP(−) cancer mRNA and miRNA datasets, respectively. Subsequently, gene set enrichment analysis and the protein-protein interaction (PPI) networks were investigated using the ClusterProfiler packages. Lastly, TF-miRNA-DEG networks were constructed using the miRWalk online tool. A total of 1,050 DEGs and 13 DEMs were identified from the normalized mRNA and miRNA expression datasets, respectively. In addition, 180 Gene Ontology terms and 30 Kyoto Encyclopedia of Genes and Genomes pathways were found to be enriched, while 6 hub genes were identified from the PPI analysis. Furthermore, 7 TF-miRNA interactions and 181 TF-miRNA-DEG axes were constructed using an integrated bioinformatics approach, while 2 TF-miRNA interactions (ZEB1-miRNA-144-3p and PAX2-miRNA-592) were confirmed using reverse transcription-quantitative PCR in samples from enrolled patients. Moreover, the ZEB1-miRNA-144-3p axis was further validated based on dual luciferase reporter assay results. In summary, an integrated bioinformatics approach was used to screen the significant molecular and regulatory axes, which may provide a novel direction to investigate the pathogenesis of gastric cancer associated with HP.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.