Abstract

We previously reported that the secreted protein acidic and rich in cystein (SPARC) was overexpressed in melanoma in humans, and the serum SPARC level was useful as a novel tumor marker for melanoma. SPARC was also reported to be overexpressed in various human cancers. In this study, we asked whether SPARC-specific cytotoxic T lymphocytes (CTL) could induce antitumor immunity to SPARC-expressing tumor in mice or not as a preclinical study of SPARC-directed anticancer immunotherapy. Because of similarities in the structural motifs of major histocompatibility complex-binding peptides between H2-Kd and HLA-A24 (A*2402), the most common human leukocyte antigen class I allele in the Japanese population, we attempted to identify the H2-Kd-restricted SPARC epitope for CTL in BALB/c mice and we found that the mouse SPARC143-151 (DYIGPCKYI) and SPARC225-234 (MYIFPVHWQF) peptides could induce peptide-reactive CTL in BALB/c mice without causing autoimmune diseases. The immunization of mice with SPARC225-234 peptide-pulsed bone marrow-derived dendritic cells (BMDC) inhibited the growth of s.c. inoculated mouse mammary cancer cell line, N2C, expressing SPARC and these mice lived longer than the mice immunized with peptide-unpulsed BMDC. In conclusion, our study indicated that SPARC peptide-based cancer immunotherapy was effective and safe at least in a mouse tumor prevention model.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call