Abstract

Heterotrimeric guanine-nucleotide-binding proteins (G-proteins) play important roles in signal transduction and regulate responses to various stresses. Although G-protein signaling pathways have been extensively identified and characterized in model plants, there is little knowledge in non-model and especially in woody plants. Mulberry is an economically and ecologically important perennial tree, which is adaptable to many environmental stresses. In this study, we identified and cloned six G-protein genes including one Gα, one Gβ, two Gγ, one RGS (regulator of G-protein signaling protein) and one RACK1 (receptor for activated C kinase 1) involved in G-protein signaling. Sequence and phylogenetic analysis revealed that Morus G-proteins are evolutionarily conserved compared with those of other plants. A real-time quantitative reverse transcription polymerase chain reaction analysis showed that Morus G-protein signaling genes were ubiquitously but differentially expressed in various tissues. The expression of all of these genes was affected by abiotic stresses and signal molecules, which indicated that Morus G-protein signaling may be involved in environmental stress and defense responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.