Abstract

Familial hypercholesterolaemia (FH) is a serious genetic metabolic disease. We identified a specific family in which the proband had typical homozygous phenotype of FH, but couldn’t detect any mutations in usual pathogenic genes using traditional sequencing. This study is the first attempt to use whole exome sequencing (WES) to identify the pathogenic genes in Chinese FH. The routine examinations were performed on all parentage members, and WES on 5 members. We used bioinformatics methods to splice and filter out the pathogenic gene. Finally, Sanger sequencing and cDNA sequencing were used to verify the candidate genes. Half of parentage members had got hypercholesterolaemia. WES identified LDLR IVS8[−10] as a candidate mutation from 222,267 variations. The Sanger sequencing showed proband had a homozygous mutation inherited from his parents, and this loci were cosegregated with FH phenotype. The cDNA sequencing revealed that this mutations caused abnormal shearing. This mutation was first identified in Chinese patients, and this homozygous mutation is a new genetic type of FH. This is the first time that WES was used in Chinese FH patients. We detected a novel genetic type of LDLR homozygous mutation. WES is powerful tools to identify specific FH families with potentially pathogenic gene mutations.

Highlights

  • Familial hypercholesterolaemia (FH) should be identified and treated as soon as possible to reduce the incidence of coronary heart disease (CHD) and delay the progress of premature cardiovascular events

  • We hope to define the practice of genetic testing of homozygous FH (HoFH) families to treat these patients

  • We excluded the majority of SNPs as nonpathogenic mutations because they appeared in healthy individuals

Read more

Summary

Introduction

A high-efficiency method of gene sequencing is very important for discovering pathogenic mutations. British researchers used this strategy to identify 48 sporadic FH patients with unknown gene diagnoses, 17 of which had an LDLR mutation and apoB mutation[21].

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.