Abstract
The direct activation of cannabinoid receptors (CBRs) results in several beneficial effects; therefore several CBRs ligands have been synthesized and tested in vitro and in vivo. However, none of them reached an advanced phase of clinical development due mainly to side effects on the CNS. Medicinal chemistry approaches are now engaged to develop allosteric modulators that might offer a novel therapeutic approach to achieve potential therapeutic benefits avoiding inherent side effects of orthosteric ligands. Here we identify the first ever synthesized positive allosteric modulator (PAM) that targets CB2Rs. The evidence for this was obtained using [3H]CP55940 and [35S]GTPγS binding assays. This finding will be useful for the characterization of allosteric binding site(s) on CB2Rs which will be essential for the further development of CB2R allosteric modulators. Moreover, the new CB2R PAM displayed antinociceptive activity in vivo in an experimental mouse model of neuropathic pain, raising the possibility that it might be a good candidate for clinical development.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.