Abstract

Two distinct fibroblast growth factors (FGF) were purified to homogeneity from bovine brain on the basis of their ability to stimulate skeletal muscle myoblast proliferation. These growth factors are also mitogenic for Swiss 3T3 cells and appear to be closely related to or identical with previously isolated anionic and cationic fibroblast growth factors. The half-maximum concentrations (EC50) for stimulation of myoblast DNA synthesis by the anionic and cationic growth factors were 30pM and 1pM, respectively. In contrast, an EC50 of 45 pM was observed for stimulation of 3T3 cell DNA synthesis by both growth factors. Binding of 125I-labeled anionic FGF was saturable with apparent Kd values of 45 pM and 11 pM and approximately 60 000 and 2000 receptor sites per cell for 3T3 cells and MM14 murine myoblasts, respectively. Unlabeled anionic and cationic FGF equally displaced 125I-labeled anionic FGF from 3T3 cells while cationic FGF was more potent than anionic FGF for displacement from skeletal muscle myoblasts, demonstrating that a single receptor binds the two distinct growth factors. Binding was specific for these factors since platelet-derived growth factor, insulin, insulin-like growth factor 1, epidermal growth factor, and nerve growth factor were unable to displace bound 125I-labeled anionic FGF from Swiss 3T3 cells. Chemical cross-linking of specifically bound 125I-labeled anionic FGF to 3T3 cells and MM14 myoblasts identified a single detergent-soluble FGF receptor with an apparent molecular weight of 165 000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call