Abstract

The metabolic network of the central carbon metabolism represents the backbone of cellular metabolism and provides the precursors and cofactors required for synthesis of secondary metabolites. It is therefore pivotal to map the operating metabolic network in the central carbon metabolism in order to design metabolic engineering strategies towards construction of more efficient producers of specific metabolites. In this context, methods that allow rapid and reliable mapping of the central carbon metabolism are valuable. In the present study, a (13)C labelling-based method was used to identify the primary metabolic pathways of the poorly characterized antibiotic-producing actinomycete Nonomuraea sp. ATCC 39727. Surprisingly, it was found that Nonomuraea sp. ATCC 39272 predominantly metabolizes glucose via the Entner-Doudoroff (ED) pathway. This represents the first time that the ED pathway has been recognized as the main catabolic pathway in an actinomycete. The Nonomuraea genes encoding the key enzymes of the ED pathway were subsequently identified, sequenced and functionally described.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.