Abstract

The identification of the electrogenerated reactive intermediates is essential for an in-depth understanding of the electroredox processes. Although various short-lived intermediates are well characterized by coupling electrochemistry with mass spectrometry (EC/MS), many electrogenerated transient species (τ < 1 μs) are still rarely captured by the currently available EC/MS approaches. Here, we present a low-delay coupling device, which was constructed by decorating a microelectrode into the front tip of a microsized ion emitter. For the first time, the in situ detection of a previously hidden intermediate, i.e., the transient nitrenium ion of carbazole (τ = 333 ns), was achieved. The electrochemical generation of indole nitrenium ion, whose half-life is estimated to be shorter compared to the carbazole nitrenium ion due to less resonance stabilization, was also confirmed by direct observation. This clog-free microelectrode/ion emitter is cheap and easy to fabricate and offers a general and powerful approach to monitoring the fast reactions of electrogenerated reactive intermediates. We believe that our integrated EC/MS approach holds substantial potential for broad applicability, particularly in probing the intricate and ultrafast electroredox processes occurring at the electrode-solution interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.