Abstract

To optimally compensate for time-varying phase aberrations with adaptive optics, a model of the dynamics of the aberrations is required to predict the phase aberration at the next time step. We model the time-varying behavior of a phase aberration, expressed in Zernike modes, by assuming that the temporal dynamics of the Zernike coefficients can be described by a vector-valued autoregressive (VAR) model. We propose an iterative method based on a convex heuristic for a rank-constrained optimization problem, to jointly estimate the parameters of the VAR model and the Zernike coefficients from a time series of measurements of the point-spread function (PSF) of the optical system. By assuming the phase aberration is small, the relation between aberration and PSF measurements can be approximated by a quadratic function. As such, our method is a blind identification method for linear dynamics in a stochastic Wiener system with a quadratic nonlinearity at the output and a phase retrieval method that uses a time-evolution-model constraint and a single image at every time step.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.