Abstract
Dengue virus (DENV) nonstructural protein 5 (NS5) consists of a methyltransferase (MTase) domain and an RNA-dependent RNA polymerase (RdRp) domain. The cross-talk between these domains occurs via a ten-residue linker. Recent solution studies of DENV NS5 from all four serotypes (DENV-1 to DENV-4) showed that NS5 adopts multiple conformations owing to its flexible linker and that DENV-4 NS5 is more compact and less flexible compared with NS5 from DENV-1 to DENV-3 [Saw et al. (2015), Acta Cryst. D71, 2309-2327]. Here, using a variety of single, double, triple and quadruple mutants of DENV-4 NS5 combined with solution X-ray scattering studies, insight into the critical residues responsible for the differential flexibility of DENV-4 NS5 is presented. The DENV-4 NS5 mutants K271T and S266N/T267A as well as the deletion mutant ΔS266T267 showed enlarged dimensions and flexibility similar to those of DENV-3 NS5. The data indicate that the residues Lys271, Ser266 and Thr267 are important for the compactness of DENV-4 NS5 and therefore may be critical for the regulation of virus replication. Furthermore, quantitative characterization of the flexibility of these DENV-4 NS5 linker mutants using the ensemble-optimization method revealed that these mutants possess a similar conformational distribution to DENV-3 NS5, confirming that these residues in the linker region cause the higher compactness of DENV-4 NS5.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta crystallographica. Section D, Structural biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.