Abstract

AbstractSince the mechanical properties of gelatin are similar to those of soft biological tissues, gelatin is a commonly used surrogate for real tissues, for example in safety engineering or medical engineering. Additional advantages of gelatin over real tissues are lower costs and better reproducibility of experiments. Therefore, constitutive models of gelatin are of great interest. In particular, it is important to capture the concentration dependence of the mechanical properties since the gelatin mass concentration significantly affects the constitutive behavior. To this end, we propose a hybrid approach linking artificial neural networks (ANN) and classical constitutive modeling to relate the gelatin's concentration to its viscoelastic material properties using indentation data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call