Abstract
The use of nanoindentation to study asphalt is aimed at understanding the relationship between properties of asphalt binder at various length scales. A combination of atomic force microscopy (AFM) imaging and nanoindentation is used to determine the relaxation moduli of bimodal and trimodal distributions of asphalt microphases to assess differences between macroscale and composite nanoscale viscoelastic behavior. The relaxation modulus values extracted from age-altered phases of the same asphalts provide important relationships between microstructural changes depicted in AFM images and changes in composite viscoelastic properties obtained from the measurements. This paper provides key information regarding asphalt microrheology, which will yield improved input values for asphalt prediction models and enhanced pavement performance. Based on comparison of the composite viscoelastic properties obtained from this study to values obtained at larger length scales, it is apparent that relaxation modulus values decrease as the length scale increases. This finding serves as the basis for ongoing studies by the authors and other researchers in the areas of asphalt nanomodification, chemical mapping, and modeling of nanodamage using AFM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.