Abstract
When unfolded proteins accumulate in the endoplasmic reticulum (ER), transcription of glucose-regulated proteins (GRPs) representing ER-resident molecular chaperones is markedly induced via the unfolded protein response (UPR) pathway. In contrast to recent progress in the analysis of yeast UPR, both cis-acting elements and transactivators responsible for mammalian UPR have remained obscure. Here, we analyzed the promoter regions of human GRP78, GRP94, and calreticulin genes and identified a novel element designated the ER stress response element (ERSE). ERSE, with a consensus of CCAATN9CCACG, was shown to be necessary and sufficient for induction of these GRPs. Using yeast one-hybrid screening, we isolated a human cDNA encoding a basic leucine zipper (bZIP) protein, ATF6, as a putative ERSE-binding protein. When overexpressed in HeLa cells, ATF6 enhanced transcription of GRP genes in an ERSE-dependent manner, whereas CREB-RP, another bZIP protein closely related to ATF6, specifically inhibited GRP induction. Endogenous ATF6 constitutively expressed as a 90-kDa protein was converted to a 50-kDa protein in ER-stressed cells, which appeared to be important for the cellular response to ER stress. These results suggest that, as in yeast, bZIP proteins are involved in mammalian UPR, acting through newly defined ERSE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.