Abstract

To investigate the regulatory mechanism of pterygium formation, we detected differentially expressed messenger RNAs (DE-mRNAs) and differentially expressed circular RNAs (DE-circRNAs) in pterygium-associated conjunctival epithelium (PCE) and normal conjunctival epithelium (NCE). Genome-wide mRNA and circRNA expression profiles of PCE and NCE were determined using high-throughput sequencing. Bioinformatics analyses, including Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, gene set enrichment analysis (GSEA), and protein-protein interaction (PPI) analysis, were conducted. The microRNAs (miRNAs) interacting with the hub DE-mRNAs and DE-circRNAs were predicted and verified using real-time quantitative PCR (RT-qPCR). The data showed that there were 536 DE-mRNAs (280 upregulated and 256 downregulated mRNAs) and 78 DE-circRNAs (20 upregulated and 58 downregulated circRNAs) in PCE. KEGG enrichment analysis indicated that the DE-mRNAs were mainly involved in the following biological processes: IL-17 signalling pathway, viral protein interaction with cytokine and cytokine receptor, cytokine-cytokine receptor interaction, ECM-receptor interaction, and focal adhesion. The GSEA results revealed that the epithelial mesenchymal transition (EMT) process was significantly enriched in upregulated mRNAs. The pterygium-associated circRNA-miRNA-mRNA network was established based on the top 10 DE-circRNAs, 4 validated miRNAs (upregulated miR-376a-5p and miR-208a-5p,downregulated miR-203a-3p and miR-200b-3p), and 31 DE-mRNAs. We found that miR-200b-3p, as a regulator of FN1, SDC2, and MEX3D, could be regulated by 5 upregulated circRNAs. In addition, we screened out EMT-related DE-mRNAs, including 6 upregulated DE-mRNAs and 6 downregulated DE-mRNAs. The EMT-related circRNA-miRNA-mRNA network was established with the top 10 circRNAs, 8 validated miRNAs (upregulated miR-17-5p, miR-181a-5p, and miR-106a-5p, downregulated miR-124-3p, miR-9-5p, miR-130b-5p, miR-1-3p, and miR-26b-5P), and 12 EMT-related DE-mRNAs. We found that hsa_circ_0002406 might upregulate FN1 and ADAM12 by sponging miR-26b-5p and miR-1-3p, respectively, thus promoting EMT in pterygium. Briefly, the study provides a novel viewpoint on the molecular pathological mechanisms in pterygium formation. CircRNA-miRNA-mRNA regulatory networks participate in the pathogenesis of pterygium and might become promising targets for pterygium prevention and treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call