Abstract

It has recently been suggested that pleckstrin homology (PH) domains bind specifically to phospholipids, with phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P 2) being most strongly bound. This observation suggests that PH domains may be responsible for membrane association of proteins in which they occur. Further, this membrane association may be regulated by enzymes that modify lipid head groups to which PH domains may bind. We have studied the binding of phospholipids to the PH domain of human dynamin, a 100 kDa GTPase that is involved in the initial stages of endocytosis. We describe a rapid method for screening PH domain/ligand interactions that gives precise binding constants. We confirm that PtdIns(4,5)P 2can bind to dynamin PH domain, although not in an aggregated state. Using NMR spectroscopy, we have mapped a specific site on the surface of dynamin PH domain of which binding of gIns(1,4,5)P 3(the head-group skeleton of PtdIns(4,5)P 2) occurs. The relative affinity of acidic phospholipids for dynamin PH domain correlates with their ability to activate the GTPase of dynamin. We propose, therefore, that the interaction of these phospholipids with dynamin is likely to occur viathe PH domain. Given the fact that PH domains are often found in pro- teins associated with GTPase activity, or in guanine nucleotide exchange factors, we suggest that one role of PH domains may be to couple phosphatidylinositol signalling to GTP hydrolysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.