Abstract
We examine theoretically the effects of the bonding geometries at the gold-thiol interfaces on the inelastic tunneling spectra of propanedithiolate (PDT) molecules bridging gold electrodes and show that inelastic tunneling spectroscopy combined with theory can be used to determine these bonding geometries experimentally. With the help of density functional theory, we calculate the relaxed geometries and vibrational modes of extended molecules each consisting of one or two PDT molecules connecting two gold nanoclusters. We formulate a perturbative theory of inelastic tunneling through molecules bridging metal contacts in terms of elastic transmission amplitudes, and use this theory to calculate the inelastic tunneling spectra of the gold-PDT-gold extended molecules. We consider PDT molecules with both trans and gauche conformations bound to the gold clusters at top, bridge, and hollow bonding sites. Comparing our results with the experimental data of Hihath et al. [Nano Lett. 8, 1673 (2008)], we identify the most frequently realized conformation in the experiment as that of trans molecules top-site bonded to both electrodes. We find the switching from the 42 meV vibrational mode to the 46 meV mode observed in the experiment to be due to the transition of trans molecules from mixed top-bridge to pure top-site bonding geometries. Our results also indicate that gauche molecular conformations and hollow site bonding did not contribute significantly to the experimental inelastic tunneling spectra. For pairs of PDT molecules connecting the gold electrodes in parallel we find total elastic conductances close to twice those of single molecules bridging the contacts with similar bonding conformations and small splittings of the vibrational mode energies for the modes that are the most sensitive to the molecule-electrode bonding geometries.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.