Abstract
The cyclin-dependent kinase (CDK) protein family plays an important role in regulating life functions, such as the cell cycle and metabolism. This study reports the first cloning and functional analysis of A. cerana cerana CDK1 (AccCDK1). The distribution profile of AccCDK1 in different developmental periods and different tissues was determined. The experimental results showed that the distribution of AccCDK1 was tissue-specific. AccCDK1 distribution at the transcriptional and translational levels was affected by stress conditions induced by H2O2, UV, HgCl2, CdCl2, extreme temperatures (4 °C, 44 °C) and pesticides (avermectin, lambda-cyhalothrin, haloxyfop-R-methyl, and glyphosate), which resulted in changes in the expression levels. These results suggest that AccCDK1 may have an important part to play in honey bee resistance to stress. The expression of a recombinant AccCDK1 protein in vitro enhanced the antistress capacities of E. coli and yeast, which suggests that AccCDK1 is related to the stress response. When AccCDK1 was silenced, the expression of some antioxidant genes was downregulated, and the enzymatic potencies of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) were reduced, which suggests that AccCDK1 takes part in the body's resistance to oxidative stress upon external stimulation by influencing relevant antioxidants. Notably, the survival rate of A. cerana cerana under high-temperature-induced stress decreased after AccCDK1 silencing, which verifies our results. In conclusion, we found that AccCDK1 played an indispensable function in resisting oxidative stress and maintaining normal cellular functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.