Abstract

Identifying the causes of water body pollution is critical because of the serious water contamination in developing countries. The textile industry is a major contributor to severe water pollution due to its high discharge of wastewater with high concentrations of organic and inorganic pollutants. In this study, fluorescence excitation emission matrix-parallel factor (EEM-PARAFAC) analysis was applied to characterize textile industry wastewater and trace its presence in water bodies. The EEM spectra of textile wastewater samples collected from 12 wastewater treatment plants (WWTPs) revealed two characteristic peaks: Peak T1 (tryptophan-like region) and Peak B (tyrosine-like region). Two protein-like components (C1 and C2) were identified in the textile wastewater by PARAFAC analysis. The components identified from different textile WWTPs were considered identical (similarity >0.95). C1 and C2 were not sensitive to changes in pH, ionic strength, or low humic acid concentration (TOC < 4 mg/L). Therefore, C1 combined with C2 was proposed as a source-specific indicator of textile wastewater, which was further demonstrated by conducting high-performance size exclusion chromatography analysis. These results suggested that EEM-PARAFAC analysis is a reliable means of identifying textile wastewater pollution in water bodies and may also enable the identification of other industrial wastewater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call