Abstract
In an effort to identify novel targets for the development of nonhormonal male contraceptives, genome-wide transcriptional profiling of the rat testis was performed. Specifically, enzymatically purified spermatogonia plus early spermatocyctes, pachytene spermatocytes, round spermatids, and Sertoli cells was analyzed along with microdissected rat seminiferous tubules at stages I, II-III, IV-V, VI, VIIa,b, VIIc,d, VIII, IX- XI, XII, XIII-XIV of the cycle of the seminiferous epithelium using RAE 230_2.0 microarrays. The combined analysis of these studies identified 16,971 expressed probe sets on the array. How these expression data, combined with additional bioinformatic data analysis and quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) analysis, led to the identification of 58 genes that have 1000-fold higher expression transcriptionally in the testis when compared to over 20 other nonreproductive tissues is described. The products of these genes may play important roles in testicular and/or sperm function, and further investigation on their utility as nonhormonal contraceptive targets is warranted. Moreover, these microarray data have been used to expedite the identification of a mutation in RIKEN cDNA 2410004F06 gene as likely being responsible for spermatogenic failure in a line of infertile mice generated by N-ethyl-N-nitrosourea (ENU) mutagenesis. The microarray data and the qRT-PCR data described are available in the Mammalian Reproductive Genetics database (http://mrg.genetics.washington.edu/).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.