Abstract

The recently synthesized thiazolylazo dye, 1-[5-benzyl-1,3-thiazol-2-yl)diazenyl]naphthalene-2-ol called shortly BnTAN, is studied by density functional theory (DFT) in three tautomeric forms in order to explain the available 1H NMR, UV–Vis and FTIR spectra. An experimentally observed IR band at 1678 cm−1, assigned to the CO bond stretching vibration, supports the notion that BnTAN retains in the less stable keto-form even in the solid state due to an ultrafast single-coordinate intramolecular proton transfer. This finding is also in a good agreement with an X-ray crystallography analysis which indicates an intermediate position of the proton between the –OH and –N=N– groups. Calculations also show that some experimentally observed 1H NMR signals could be considered as being averaged values between theoretically calculated chemical shifts for the corresponding protons in the keto- and enol-tautomers. At the same time the UV–Vis spectra are almost insensitive to the tautomerization processes as the main single band absorption at 500 nm is present in all tautomers according to our TD DFT simulations. The minor differences in spectral features of the long-wavelength visible region are also noted and discussed with respect to the manifestation of the less stable tautomer form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.