Abstract

Kinetic studies of L-arginine transport in human platelets have identified a high-affinity, low-capacity transport system [Michaelis-Menten constant (K(m)) about 10 microM] for cationic amino acids that also transports neutral amino acids with high affinity in the presence of Na+ but not K+. These characteristics, together with our kinetic cis-inhibition studies, indicate that saturable L-arginine transport in human platelets is mediated via the system y+L and not the classic cationic transporter system y+. We present here the first evidence that L-arginine transport via system y+L is increased twofold in platelets from patients with chronic renal failure. System y+L has been described in human erythrocytes, peripheral blood mononuclear cells and placenta, and up-regulation of system y+L activity in human platelets could explain the paradox of increased nitric oxide (NO) production by uraemic platelets under conditions of decreased plasma L-arginine and elevated NG-monomethyl-L-arginine (L-NMMA) concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.