Abstract

The Middle East Respiratory Syndrome Coronavirus (MERS-CoV) is a potentially lethal infection that presents a substantial threat to health, especially in Middle East nations. Given that no FDA-approved specific therapy for MERS infection exists, designing and discovering a potent antiviral therapy for MERS-CoV is crucial. One pivotal strategy for inhibiting MERS replication is to focus on the viral main protease (Mpro). In this study, we identify potential novel Mpro inhibitors employing structure-based virtual screening of our recently reported Ugi reaction-derived library (URDL) consisting of cherry-picked molecules from the literature. The key features of the URDL library include synthetic tractability (1–2 pot synthesis) of the molecules scaffold and unexplored chemical space. The hits were ranked based on the docking score, MM-GBSA free energy of binding, and the interaction pattern with the active site residues. A molecular dynamics (MD) simulation study was performed for the first two top-ranked compounds to analyze the stability and free binding energy based on the molecular mechanics Poisson-Boltzmann surface area. The potential mean force calculated from the steered molecular dynamics (SMD) simulations of the hits indicates improved H-bond potential, enhanced conformational stability, and binding affinity toward the target, compared to the cocrystallized ligand. The discovered hits represent novel synthetically tractable scaffolds as potential MERS-CoV Mpro inhibitors. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.