Abstract

Suvorexant (Belsomra®) is a novel dual orexin receptor antagonist used for the treatment of insomnia. The prevalence of suvorexant in forensic samples is relatively unknown, which demonstrates the need for robust analytical assays for the detection of this sedative hypnotic in forensic toxicology laboratories. In this study, suvorexant was isolated from whole blood using a simple acidic/neutral liquid-liquid extraction followed by analysis by liquid chromatography tandem mass spectrometry (LC-MS/MS). Matrix effects were evaluated qualitatively and quantitatively using various extraction solvents, proprietary lipid clean-up devices and source conditions. The method was validated in terms of limit of detection, limit of quantitation, precision, bias, calibration model, carryover, matrix effects and drug interferences. Electrospray is a competitive ionization process whereby compounds in the droplet compete for a limited number of charged sites at the surface. As such, it is capacity-limited, and LC-MS-based techniques must be carefully evaluated to ensure that matrix effects or coeluting drugs do not impact quantitative assay performance. In this report, we describe efforts to ameliorate such effects in the absence of an isotopically labeled internal standard. Matrix effects are highly variable and heavily dependent on the physico-chemical properties of the substance. Although there is no universal solution to their resolution, conditions at the electrospray interface can mitigate these issues. Using this approach, the LC-MS/MS assay was fully validated and limits of detection and quantitation of 0.1 and 0.5ng/mL suvorexant were achieved in blood.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call