Abstract

Castanea sativa is one of the main multipurpose tree species valued for its timber and nuts. This species is susceptible to two major diseases, ink disease and chestnut blight, caused by Phytophthora spp. and Cryphonectria parasitica, respectively. The loss-of-function mutations of genes required for the onset of pathogenesis, referred to as plant susceptibility (S) genes, are one mechanism of plant resistance against pathogens. On the basis of sequence homology, functional domain identification, and phylogenetic analyses, we report for the first time on the identification of S-genes (mlo1, dmr6, dnd1, and pmr4) in the Castanea genus. The expression dynamics of S-genes were assessed in C. sativa and C. crenata plants inoculated with P. cinnamomi and C. parasitica. Our results highlighted the upregulation of pmr4 and dmr6 in response to pathogen infection. Pmr4 was strongly expressed at early infection phases of both pathogens in C. sativa, whereas in C. crenata, no significant upregulation was observed. The infection of P. cinnamomi led to a higher increase in the transcript level of dmr6 in C. sativa compared to C. crenata-infected samples. For a better understanding of plant responses, the transcript levels of defense genes gluB and chi3 were also analyzed.

Highlights

  • The Castanea genus belongs to the Fagaceae family and includes four major species of commercial and ecosystemic interest: Castanea sativa Mill. (European chestnut), Castanea crenata Sieb. et Zucc. (Japanese chestnut), Castanea mollissima Bl. (Chinese chestnut), and Castanea dentata Borkh (American chestnut)

  • Our analysis revealed the strong activation of pmr4 and dmr6 genes in response to infection by both P. cinnamomi and C. parasitica

  • DiCs.csuastisviaoins a European woody tree species commonly used across the globe in the food and timber industries

Read more

Summary

Introduction

The Castanea genus belongs to the Fagaceae family and includes four major species of commercial and ecosystemic interest: Castanea sativa Mill. (European chestnut), Castanea crenata Sieb. et Zucc. (Japanese chestnut), Castanea mollissima Bl. (Chinese chestnut), and Castanea dentata Borkh (American chestnut). C. sativa is a woody species common in all Mediterranean countries and Asia Minor It has been widely used since ancient times, for the consumption of its edible nuts, and for wood and the products of its ecosystem, such as mushrooms and honey. The disease, which affects both young and old trees, leads to subcortical necrosis of the root system and the basal part of the stem; this is followed by the appearance of wasting symptoms in the foliage until the total desiccation and death of the plant occur [7,8,9,10] These pathogens spread mainly through the movement of soil harboring inoculum and the dissemination of asexual flagellated spores (i.e., zoospores) that can actively travel short distances or passively travel long distances in flowing water [10,11]. The use of resistant rootstocks represents one possible solution to protect against these pathogens, at present, only tolerant selections obtained from hybridization between C. sativa and C. crenata are available [12]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call