Abstract

Plant aldehyde oxidases (AOs) have gained great attention during the last years as they catalyze the last step in the biosynthesis of the phytohormone abscisic acid by oxidation of abscisic aldehyde. Furthermore, oxidation of indole-3-acetaldehyde by AOs is likely to represent one route to produce another phytohormone, indole-3-acetic acid, and thus, AOs play important roles in many aspects of plant growth and development. In the present work we demonstrate that heterologously expressed AAO1 and AAO3, two prominent members of the AO family from Arabidopsis thaliana, do not only generate hydrogen peroxide but also superoxide anions by transferring aldehyde-derived electrons to molecular oxygen. In support of this, superoxide production has also been found for native AO proteins in Arabidopsis leaf extracts. In addition to their aldehyde oxidation activity, AAO1 and AAO3 were found to exhibit NADH oxidase activity, which likewise is associated with the production of superoxide anions. According to these results and due to the fact that molecular oxygen is the only known physiological electron acceptor of AOs, the production of hydrogen peroxide and/or superoxide has to be considered in any physiological condition in which aldehydes or NADH serve as substrate for AOs. In this respect, conditions such as natural senescence and stress-induced stomatal movement, which both require simultaneously elevated levels of abscisic acid and hydrogen peroxide/superoxide, are likely to benefit from AOs in two ways, namely by formation of abscisic acid and by concomitant formation of reactive oxygen species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call