Abstract

Based on a general modular synthetic scheme, a variety of chiral bidentate P/P-, P/S-, P/N-, and P/Se-ligands is accessible in an efficient divergent manner starting from phenol or naphthol derived backbone systems. A library of 20 selected ligands was tested in the Rh-catalyzed asymmetric hydroboration of styrene to give 1-phenylethanol in up to 91% ee after oxidative work-up. It was demonstrated that small variations of the ligand structures lead to pronounced, unpredictable differences in the performance of the in situ generated rhodium complexes. The modular approach should be applicable for the identification and optimization of suitable ligands for other transition metal-catalyzed transformations with comparably low effort.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.