Abstract

The emerging noncontact vision-based displacement sensor system offers a promising alternative to the conventional sensors for quantitative structural integrity assessment. Significant advantages of the noncontact vision-based sensor include its low cost, ease of operation, and flexibility to extract structural displacement responses at multiple points. This study aims to link the measured displacement data to the quantification of the structural health condition, by validating the feasibility of simultaneous identification of structural stiffness and unknown excitation forces in time domain using output-only vision-based displacement measurement. Numerical analysis are first carried out to investigate the accuracy, convergence and robustness of identified results to different noise levels, sensor numbers, and initial estimates of structural parameters. Then, experiment on a laboratory scaled beam structure is conducted. Results show that the global stiffness of the beam specimen as well as external hammer excitation forces can be successfully and accurately identified from displacement measurement at two points using one camera. The proposed output-only time-domain identification procedure utilizing vision-based displacement measurement represents a low-cost method for either periodic or long-term bridge performance assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call