Abstract

The Clostridium perfringens tetracycline-resistance protein, TetA(P), is an integral inner-membrane protein that mediates the active efflux of tetracycline from the cell. TetA(P) acts as an antiporter, presumably transporting a divalent cation-tetracycline complex in exchange for a proton, and is predicted to have 12 transmembrane domains (TMDs). Two glutamate residues that are located in predicted TMD 2 were previously shown to be required for the active efflux of tetracycline by TetA(P). To identify additional residues that are required for the structure or function of TetA(P), a random mutagenesis approach was used. Of the 61 tetracycline-susceptible mutants that were obtained in Escherichia coli, 31 different derivatives were shown to contain a single amino acid change that resulted in reduced tetracycline resistance. The stability of the mutant TetA(P) proteins was examined by immunoblotting and 19 of these strains were found to produce a detectable TetA(P) protein. The MIC of these derivatives ranged from 2 to 15 microg tetracycline ml(-1), compared to 30 microg tetracycline ml(-1) for the wild-type. The majority of these mutants clustered into three potential loop regions of the TetA(P) protein, namely the cytoplasmic loops 2-3 and 4-5, and loop 7-8, which is predicted to be located in the periplasm in E. coli. It is concluded that these regions are of functional significance in the TetA(P)-mediated efflux of tetracycline from the bacterial cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.