Abstract
Both in vivo [1] and in vitro [2] experimental data suggest that medium spiny neurons in striatum participate in the formation of sequentially firing cell assemblies, at a timescale relevant for the presumed involvement of basal ganglia in reinforcement learning. Computational models argue that such cell assemblies are a feature of a minimal network architecture of the striatum [3]. This suggests that cell assemblies can be a potential candidate for representation of the 'system states' in the framework of reinforcement learning. Spike patterns associated with cells assemblies can be identified by clustering the spectrum of zero-lag cross-correlation between all pairs of neurons in a network [3]. Other methods based on the dimensionality reduction of the similarity matrix of the spike trains have also been used [2,4]. Here we investigate how the identification of cell assemblies is dependent on the methodology chosen, and to what extent the statistical properties of the cell assemblies make them suitable for representation of system states in the striatum during reinforcement learning.
Highlights
Both in vivo [1] and in vitro [2] experimental data suggest that medium spiny neurons in striatum participate in the formation of sequentially firing cell assemblies, at a timescale relevant for the presumed involvement of basal ganglia in reinforcement learning
Spike patterns associated with cells assemblies can be identified by clustering the spectrum of zero-lag crosscorrelation between all pairs of neurons in a network [3]
Other methods based on the dimensionality reduction of the similarity matrix of the spike trains have been used [2,4]
Summary
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.