Abstract
Genome-based signal peptide predictions classified Streptomyces coelicolor as the microorganism that secretes the most proteins through the twin-arginine translocation (Tat)-dependent secretion pathway. Availability of a DeltatatC mutant of the closely related strain Streptomyces lividans impaired Tat-dependent protein secretion and enabled identification of many extracellular proteins that are secreted via the Tat pathway. Proteomic techniques were applied to analyze proteins from the supernatants of log-phase cultures. Since the bacterial secretome depends mainly on the carbon sources available during growth, xylose, glucose, chitin, and soil extracts were used. A total of 63 proteins were identified, among which 7 were predicted by the TATscan program, and 20 were not predicted but contained a potential Tat signal motif. Thirteen proteins having no signal sequence could be co-transported by Tat-dependent proteins because the genes that encode these proteins are in close proximity in the genome. Finally, the presence of 23 proteins lacking signal peptides was difficult to explain. More secreted proteins could be identified as Tat substrates in varying carbon sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.